Sabtu, 26 Juni 2010

Peralatan Astronomi Kuno

Peralatan Astronomi Kuno


Saat ini peralatan untuk melihat keadaan ruang angkasa sudah sangat canggih. Mulai dari teleskop hingga stasiun ruang angkasa yang dikendalikan oleh robot.

Tetapi tahukah kalian sebenarnya peralatan untuk astronomi itu sudah ada sejak jamah dahulu. Hal itu terbukti dengan ditemukannya peralatan di kapal Yunani Kuno yang tenggelam 2000 tahun lalu.

Alat tersebut dapat memprediksi waktu terjadinya gerhana dan dikenal dengan nama antikythera. Ukurannya, sebesar kotak sepatu dan terbuat dari logam. Saat ditemukan di bawah air 100 tahun yang lalu, keadaan alat sudah hancur.

Untuk meneliti alat tersebut para ilmuwan menggunakan sinar X dan komputer tomografi. Dengan cara itu mereka bisa melihat isi di dalam antikythera.

"Komputer tomografi dapat melihat isi, bentuk dan cara kerja antikythera," kata John M. Steele, salah satu peneliti dari Universitas Durham di Inggris.

Peneliti menemukan alat tersebut terdiri dari 30 roda perunggu dan 225 gigi roda. Hal itu membuktikan bahwa peralatan tersebut dapat digunakan pada komputer untuk memprediksi kapan gerhana bulan dan matahari terjadi.

Para peneliti memperkirakan alat tersebut juga dapat mengetahui pergerakan planet-planet di ruang angkasa. Penemuan tersebut juga menunjukkan antikythera sudah digunakan 1000 tahun lamanya.

Observatorium Bosscha merupakan salah satu tempat peneropongan bintang tertua di Indonesia. Observatorium Bosscha berlokasi di Lembang, Jawa Barat, sekitar 15 km di bagian utara Kota Bandung dengan koordinat geografis 107° 36' Bujur Timur dan 6° 49' Lintang Selatan. Tempat ini berdiri di atas tanah seluas 6 hektar, dan berada pada ketinggian 1310 meter di atas permukaan laut atau pada ketinggian 630 m dari plato Bandung. Kode observatorium Persatuan Astronomi Internasional untuk observatorium Bosscha adalah 299.


Kubah teleskop Zeiss Besar di Observatorium Bosscha.



Kubah dalam keadaan tertutup.

Pembangunan observatorium ini sendiri menghabiskan waktu kurang lebih 5 tahun sejak tahun 1923 sampai dengan tahun 1928.
Publikasi internasional pertama Observatorium Bosscha dilakukan pada tahun 1933. Namun kemudian observasi terpaksa dihentikan dikarenakan sedang berkecamuknya Perang Dunia II. Setelah perang usai, dilakukan renovasi besar-besaran pada observatorium ini karena kerusakan akibat perang hingga akhirnya observatorium dapat beroperasi dengan normal kembali.
Kemudian pada tanggal 17 Oktober 1951, NISV menyerahkan observatorium ini kepada pemerintah RI. Setelah Institut Teknologi Bandung (ITB) berdiri pada tahun 1959, Observatorium Bosscha kemudian menjadi bagian dari ITB. Dan sejak saat itu, Bosscha difungsikan sebagai lembaga penelitian dan pendidikan formal Astronomi di Indonesia.
Terdapat 5 buah teleskop besar, yaitu:
• Teleskop Refraktor Ganda Zeiss
Teleskop ini biasa digunakan untuk mengamati bintang ganda visual, mengukur fotometri gerhana bintang, mengamati citra kawah bulan, mengamati planet, mengamati oposisi planet Mars, Saturnus, Jupiter, dan untuk mengamati citra detail komet terang serta benda langit lainnya. Teleskop ini mempunyai 2 lensa objektif dengan diameter masing-masing lensa 60 cm, dengan titik api atau fokusnya adalah 10,7 meter.
• Teleskop Schmidt Bima Sakti
Teleskop ini biasa digunakan untuk mempelajari struktur galaksi Bima Sakti, mempelajari spektrum bintang, mengamati asteroid, supernova, Nova untuk ditentukan terang dan komposisi kimiawinya, dan untuk memotret objek langit. Diameter lensa 71,12 cm. Diameter lensa koreksi biconcaf-biconfex 50 cm. Titik api/fokus 2,5 meter. Juga dilengkapi dengan prisma pembias dengan sudut prima 6,10, untuk memperoleh spektrum bintang. Dispersi prisma ini pada H-gamma 312A tiap malam. Alat bantu extra-telescope adalah Wedge Sensitometer, untuk menera kehitaman skala terang bintang , dan alat perekam film
• Teleskop Refraktor Bamberg
Teleskop ini biasa digunakan untuk menera terang bintang, menentukan skala jarak, mengukur fotometri gerhana bintang, mengamati citra kawah bulan, pengamatan matahari, dan untuk mengamati benda langit lainnya. Dilengkapi dengan fotoelektrik-fotometer untuk mendapatkan skala terang bintang dari intensitas cahaya listrik yang di timbulkan. Diameter lensa 37 cm. Titik api atau fokus 7 meter.
• Teleskop Cassegrain GOTO
Dengan teleskop ini, objek dapat langsung diamati dengan memasukkan data posisi objek tersebut. Kemudian data hasil pengamatan akan dimasukkan ke media penyimpanan data secara langsung. Teropong ini juga dapat digunakan untuk mengukur kuat cahaya bintang serta pengamatan spektrum bintang. Dilengakapi dengan spektograf dan fotoelektrik-fotometer
• Teleskop Refraktor Unitron
Teleskop ini biasa digunakan untuk melakukan pengamatan hilal, pengamatan gerhana bulan dan gerhana matahari, dan pemotretan bintik matahari serta pengamatan benda-benda langit lain. Dengan Diameter lensa 13 cm, dan fokus 87 cm


Observatorium Bosscha (1900-40)
Observatorium Bosscha (dahulu bernama Bosscha Sterrenwacht) dibangun oleh Nederlandsch-Indische Sterrenkundige Vereeniging (NISV) atau Perhimpunan Bintang Hindia Belanda. Pada rapat pertama NISV, diputuskan akan dibangun sebuah observatorium di Indonesia demi memajukan Ilmu Astronomi di Hindia Belanda. Dan di dalam rapat itulah, Karel Albert Rudolf Bosscha, seorang tuan tanah di perkebunan teh Malabar, bersedia menjadi penyandang dana utama dan berjanji akan memberikan bantuan pembelian teropong bintang. Sebagai penghargaan atas jasa K.A.R. Bosscha dalam pembangunan observatorium ini, maka nama Bosscha diabadikan sebagai nama observatorium ini.

Macam-macam Sistem Koordinat Benda Langit

Sistem Koordinat Benda Langit

Tata Koordinat Horison
Tata koordinat ini adalah tata koordinat yang paling sederhana dan paling mudah dipahami. Tetapi tata koordinat ini sangat terbatas, yaitu hanya dapat menyatakan posisi benda langit pada satu saat tertentu, untuk saat yang berbeda tata koordinat ini tidak dapat memberikan hubungan yang mudah dengan posisi benda langit sebelumnya. Karena itu menyatakan saat benda langit pada posisi itu sangat diperlukan dan tata koordinat lain diperlukan agar dapat memberikan hubungan dengan posisi sebelum dan sesudahnya.
Bola langit dapat dibagi menjadi dua bagian sama besar oleh satu bidang yang melalui pusat bola itu, menjadi bagian atas dan bagian bawah. Bidang itu adalah bidang horisontal yang membentuk lingkaran HORISON pada permukaan bola, dan bagian atas adalah letak benda-benda langit yang tampak, dan bagian bawahnya adalah letak dari benda-benda langit yang tidak terlihat saat itu.


Penjelasan gambar
UTSB : Bidang horison
UZS : Meridian langit
BZT : Ekuator langit
Disetiap tempat di permukaan Bumi mempunyai lingkaran meridian yang berbeda-beda tergantung bujur tempat itu (yang berbujur sama mempunyai lingkaran meridian yang sama)
Pada dasarnya garis Utara-Selatan adalah perpanjangan sumbu Bumi yang melalui kutub Utara dan kutub Selatan. Titik Utara di Kutub Utara sering disebut Titik Utara Sejati (True North), dan sebaliknya Titik Selatan Sejati (True South), yang mana letaknya berbeda dengan Kutub Utara Magnetik dan Kutub Selatan Magnetik. Apabila dilihat dari zenith maka dengan putaran searah jarum jam akan mendapatkan arah Utara, Timur, Selatan dan Barat dengan besar perbedaan sudutnya sebesar 90o.
Dengan mengenal istilah tersebut akan memudahkan kita dalam memahami tata koordinat horison dengan ordinatnya yaitu, Azimuth dan Tinggi (A,h).
Tinggi benda langit dapat digambarkan pada bola langit dengan membuat lingkaran besar yang melalui zenith, benda langit itu dan tegak lurus pada horison (lingkaran vertikal), diukur dari horison dengan nilainya 0o-90o.
Untuk menyatakan Azimuth terdapat 2 versi:
• Versi pertama menggunakan titik Selatan sebagai acuan.
• Versi kedua yang dianut secara internasional, diantaranya dipakai pada astronomi dan navigasi menggunakan titik Utara sebagai acuan, berupa busur UTSB.
Kedua versi tersebut menggunakan arah yang sama, yaitu jika dilihat dari zenith arahnya searah perputaran jarum jam yang nilainya 0o-360o.
Keuntungan dalam penggunaan sistem koordinat horison yaitu pada penggunaannya yang praktis, Sistem koordinat yang sederhana dan secara langsung dapat dibayangkan letak objek pada bola langit. Namun tedapat juga beberapa kelemahan pada Sistem koordinat ini, yaitu pada tempat yang berbeda maka horisonnya pun berbeda serta terpengaruh oleh waktu dan gerak harian benda langit.

Tata Koordinat Ekuator
Tata koordinat ini merupakan salah satu tata koordinat yang sering digunakan dalam astronomi. Sistem koordinat ini dapat menyatakan letak benda langit dalam skala waktu relatif panjang. Sekalipun perubahan unsur-unsur koordinatnya relatif kecil terhadap waktu.
Dalam setiap pembahasan sistem koordinat benda langit, setiap benda langit selalu dipandang terproyeksi pada suatu bidang bola khayal yang digambarkan sebagai bola langit. Bola yang memuat bidang khayal tersebut disebut bola langit. Ukuran bola Bumi diabaikan terhadap bola langit sehingga setiap pengamat di muka Bumi dianggap berada di pusat bola langit.

Di bawah ini diberikan deskripsi istilah-istilah yang dipakai pada bola langit:
Titik kardinal: empat titik utama arah kompas pada lingkaran horison, yaitu Utara, Timur, Selatan dan Barat.
Lingkaran kutub, lingkaran jam atau bujur langit: lingkaran besar melalui kutub-kutub langit.
Lingkaran ekliptika: lingkaran tempat kedudukan gerak semu tahunan Matahari. Perpotongan bidang orbit Bumi (ekliptika) dengan bola langit.
Kutub-kutub langit: titik-titik pada bola langit tempat bola langit berotasi. Perpotongan bola langit dengan sumbu Bumi. Kutub langit di belahan langit Selatan disebut Kutub Langit Selatan (KLS) dan di belahan langit Utara disebut Kutub Langit Utara (KLU).
Pada sistem koordinat ekuator, koordinat yang digunakan adalah koordinat Aksensiorekta (α) dan Deklinasi (d). Aksensiorekta adalah panjang busur yang dihitung dari titik Aries atau disebut juga dengan titik gamma (g) pada lingkaran ekuator langit sampai ke titik kaki dengan arah penelusuran ke arah timur, dengan rentang antara 0 s.d. 24 jam atau 00 s.d. 3600. Sedangkan deklinasi adalah panjang busur dari titik kaki pada lingkaran ekuator langit ke arah kutub langit sampai ke letak benda pada bola langit. Deklinasi bernilai positif jika ke arah KLU dan bernilai negatif jika ke arah KLS, dengan rentang antara 00 s.d. 900 atau 00 s.d. -900.
Dalam penggunaan sistem koordinat ekuator, terdapat hubungan antara waktu matahari dengan waktu bintang (waktu sideris). Dimana Waktu Menengah Matahari (WMM) = sudut jam Matahari + 12 jam. Hubungan ini tentunya berkaitan juga dengan tanggal-tanggal istimewa titik Aries terhadap Matahari. Tanggal-tanggal istimewa tersebut adalah :
1. Sekitar tanggal 21 Maret (TMS), Matahari berimpit dengan Titik Aries. Jam 0 WMM = jam 12 waktu bintang.
2. Sekitar tanggal 22 Juni (TMP), saat Matahari di kulminasi bawah, titik Aries berhimpit dengan titik Timur. Jam 0 WMM = jam 18 waktu bintang.
3. Sekitar tanggal 23 September (TMG), saat Matahari di kulminasi bawah, titik Aries berada di titik kulminasi atas. Jam 0 WMM = jam 0 waktu bintang.
4. Sekitar tanggal 22 Desember (TMD), saat Matahari di kulminasi bawah, titik Aries berhimpit dengan titik Barat. Jam 0 WMM = jam 06 waktu bintang.

Gerak Harian Benda Langit
Bola langit melakukan gerak semu harian akibat gerak rotasi Bumi. Pengamatan permukaan Bumi dapat mengamati benda langit bergerak berlawanan arah dengan arah gerak rotasi Bumi. Rotasi Bumi arahnya dari barat ke timur, inilah yang menyebabkan seolah-olah benda langit bergerak dari timur ke barat.
Oleh karena gerak harian bola langit terjadi akibat gerak rotasi Bumi, maka periode gerak harian benda langit sama dengan periode rotasi Bumi yaitu satu hari, yang umum dianggap satu hari adalah 24 jam, sehingga dalam selang waktu itu Bumi telah berotasi sebesar 360o. Berikut ini diberikan hubungan waktu dan panjang busur yang ditempuh benda langit dalam melakukan gerak harian:
24j = 3600
1j = 150
4m = 10
4d = 1′
Lintasan gerak benda langit sejajar dengan ekuator langit dengan kemiringan tergantung pada lintang pengamat (Φ) di permukaan Bumi. Besarnya sudut kemiringan menunjukkan besarnya jarak kutub (90o- Φ) tempat pengamat berada. Lintasan gerak harian benda langit di ekuator langit berbentuk lingkaran besar sedangkan di tempat lainnya lingkaran kecil.
Kedua kutub langit itu yaitu KLU dan KLS yang memiliki lintasan gerak harian berbentuk titik, sehingga tampak diam diputari oleh seluruh benda-benda langit. Benda di belahan langit Utara tampak mengedari KLU dan di belahan langit selatan tampak mengedari KLS. Kedua kutub itu memiliki ketinggian yang berbeda di permukaan Bumi, tergantung lintang pengamat dipermukaan Bumi. Tempat di belahan Bumi Utara, letak KLU berada di atas horison dengan ketinggian sama dengan besarnya lintang pengamat dan KLS berada di bawah horison. Sebaliknya tempat di belahan Bumi Selatan, letak KLS berada di atas horison dengan ketinggian sama dengan besarnya lintang pengamat dan KLU berada di bawah horison.

Penentuan Waktu Sideris
Waktu sideris atau waktu bintang didasarkan kepada kala rotasi bumi terhadap acuan bintang. Seperti halnya pada hari matahari, satu hari sideris dibagi menjadi 24 jam, tetapi panjang harinya sendiri lebih pendek sekitar 4 menit dibandingkan hari matahari. Adanya perbedaan panjang hari sideris dengan hari matahari menyebabkan bintang-bintang termasuk titik gamma setiap hari mencapai meridian pengamat lebih cepat sekitar 4 menit dari hari sebelumnya. Dengan lain perkataan, titik gamma bergerak sepanjang lingkaran ekuator ke arah barat sekitar 1 derajat busur setiap harinya.
Sistem koordinat ekuator

Sistem koordinat ekuator barangkali adalah sistem koordinat langit yang paling sering digunakan. Sistem koordinat ini merupakan sistem koordinat yang bersifat geosentrik. Mirip dengan sistem koordinat geografi yang dinyatakan dalam bujur dan lintang, sistem koordinat ekuator dinyatakan dalam asensio rekta dan deklinasi. Kedua sistem koordinat tersebut menggunakan bidang fundamental yang sama, dan kutub-kutub yang sama. Ekuator langit sebenarnya adalah perpotongan perpanjangan bidang ekuator Bumi pada bola langit, dan kutub-kutub langit sebenarnya merupakan perpanjangan poros rotasi Bumi (yang melewati kutub-kutub Bumi) pada bola langit.
Seperti halnya bujur, asensio rekta dihitung sepanjang lingkaran yang sejajar ekuator. Asensio rekta dihitung ke arah timur mulai dari titik Aries atau titik Vernal Ekuinok yang merupakan salah satu titik perpotongan antara bidang ekliptika dan ekuator langit, tempat Matahari berada pada tanggal 21 Maret (lihat gambar). Asensio rekta dilambangkan dengan "α", kadang-kadang disebut juga RA (dari bahasa Inggris Right Ascension) dan dinyatakan dalam satuan sudut (jam, menit, detik), dengan 1 jam = 360 derajad / 24 jam = 15 derajad. Dalam pengamatan praktis seringkali harga ini tidak diketahui bahkan harus ditentukan sehingga digunakan besaran lain yang bersifat lokal, yaitu sudut jam atau HA (dari bahasa Inggris Hour Angle).
Seperti halnya lintang, deklinasi diukur dari ekuator ke arah kutub. Deklinasi bernilai positif bila benda langit yang diamati berada di belahan langit utara, dan negatif bila benda langit yang diamati berada di belahan bumi selatan. Deklinasi dilambangkan dengan "δ" dan dinyatakan dalam satuan sudut (derajat, menit, detik).

penjelasan tentang komet, asteroid, dan meteorid

1. Komet
Jasad-jasad (benda-benda) antariksa ini pada permulaan terlihat sebagai kabut kecil di antara bintang-bintang lain yang setiap hari semakin bertambah terang cahayanya, dan kemudian terlihat sebagai bintang berekor (Comet/ Komet). Komet nampak paling terang jika terlihat sebagai bintang sore dan bintang pagi.
Komet terdiri dari kepala dan ekor. Kepala terdiri atas inti dan lapisan-lapisan di sekeliling inti yang disebut Koma atau rambut. Kepala Komet mempunyai garis tengah sampai 100.000 km dan panjang ekor antara 10 – 100 juta km.
Kelihatan seperti bintang yang muncul sekonyong-konyong sebagai bintang yang bergerak dengan cepat, kemudian segera padam. Inti berasal dari benda kosmis yang amat kecil dengan garis tengah 0,2 – 0,5 mm memasuki atmosfer dengan kecepatan 40 km/detik dan pada jarak 160 a’ 502 km di atas bumi mulai pijar karena menekan udara di depannya, sehingga udara yang amat tertekan ini menjadi pijar dan benda-benda tersebut terbakar menjadi debu. Meteor tersebut sering diikuti oleh ekor yang terdiri atas uap pijar yang mengandung ion.
Arah meteor umumnya tak menentu kecuali pada waktu ada hujan bintang beralih seolah-olah datang dari satu titik sinar atau radian. Hujan beralih ini disebut dengan nama rasi di mana radiannya terletak, misalnya: Perseida, Leonida, Lyrida, Cyanida, dan sebagainya. Perseida nampak pada hari-hari tanggal 10 – 13 Agustus sedangkan Leonida pada tanggal 10 – 14 Nopember, sedang pada tiap 33 tahun sekali lebih deras.

2.Asteroid
Telah lama orang menduga adanya planet di angka 28 dari deret Titius-Bode. Pada tanggal 1 Januari 1801 Piazzi menemukan planet yang amat kecil dengan diameter 780 km dan diberi nama Ceres (Dewi Kehidupan). Selanjutnya tahun 1802 Olbers menemukan planetoida yang kedua dan diberi nama Pallas, tahun 1804 Yuno, tahun 1807 Vesta, tahun 1845 Planetoid ke-5 ditemukan Hecnke. Sekarang telah ditemukan lebih dari 5.000 planetoid dan kira-kira 1.700 dari jumlah tersebut diketahui orbitnya.
Orbit asteroid terutama di antara Mars dan Yupiter. Kebanyakan eksentrisiteitnya besar, misalnya Adones e= 0,78 pheriheliumnya sampai orbit Merkurius, Hidalgo = 0,65 (mencapai orbit Mars), Incrarus e= 0,83 (pheriheliumnya sangat dekat dengan matahari).

3. Meteorid
Kadang-kadang ada meteor yang nampaknya sebesar bulan yang disebut Daru/ Bola Api. Bola api ini disebabkan oleh benda-benda kosmis berupa bongkah-bongkah materi yang jauh lebih besar dari pada kersik-kersik kosmis dan disebut meteorid atau batu meteor atau bolid. Batu-batu kosmis ini pada waktu mendekati bumi sampai setinggi 15 km di atas bumi seolah-olah direm oleh atmosfer bumi yang lebih padat, sehingga di depannya berpijar, kemudian berkurang tekanannya dan padam. Seringkali bola api sebelum jatuh ke bumi meletus dengan suara yang amat dahsyat dan mengeluarkan sinar cahaya yang amat kuat. Ini disebabkan karena penghambatan kecepatan dengan sekonyong-konyong tadi, sehingga tenaganya diubah menjadi panas.
Meteorik menjadi panas dan gas-gas di dalamnya meledak bersama-sama hancurnya meteorid sebelum sampai ke bumi.
Meteor-meteor yang jatuh ke bumi ada yang sebesar beberapa cm³ dengan berat 1 – 5 kg saja, tetapi ada pula yang volumenya 5 – 10 m³ dengan berat 25 – 60 ton atau lebih. Beberapa meteorid raksasa yang pernah jatuh ke bumi adalah sebagai berikut:
a. Di Siberia sebelah utara di Bouhal pada tanggal 3 Juni 1908 ratusan km³ tanah sekitar rusak dan 20 km² hutan rimba roboh getarannya sampai di Eropa barat. Terbentuklah kawah meteor sebanyak 200 akibat pecahan-pecahan batu meteorit.
b. Di Vladivostok pada tanggal 21 September 1947 seberat ±1.000 ton.
c. Di Canon Diablo (Arizona – USA) membuat kawah meteor selebar ±1.300 m sedalam 570 m dan terdiri atas besi, nikel, dan platina.
Batu meteorid yang dikenal ada tiga jenis:
a. Meteorid batu yang banyak mengandung Calcium dan Magnesium.
b. Meteorid besi nikel mengandung besi (90%) dan nikel (8%).
c. Toktit yang mengandung asam kisal (80%) yang serupa dengan glas hijau, batu-batu ini ditemukan tersebar sepanjang lingkaran bumi yang melalui Bohemia, India Belakang, Biliton Australia, Tasmania, Peru, dengan umur batu ± 2 milyar tahun dengan berat jenis kurang lebih sebesar berat jenis Bulan. Hal ini menimbulkan dugaan bahwa toktit berasal dari bulan yang dilemparkan oleh letusan gunung-gunung apinya ke bumi pada jutaan tahun yang lalu.

Nama Ilmuwan Yang Berjasa Dibidang Astronomi

Anaximander (610-546 SM)
Seorang ilmuwan Yunani yang sering disebut sebagai “Bapak Ilmu Astronomi”. Ia menganggap bentuk Bumi sebagai silinder dan angkasa berputar tiap hari mengelilinginya.
Aristharkus (abad ke-3 SM)
Seorang ilmuwan Yunani yang percaya bahwa Matahari adalah pusat alam semesta. Ia orang pertama yang menghitung ukuran relatif Matahari, Bumi dan Bulan. Ia menemukan bahwa diameter bulan lebih dari 30% diameter Bumi (sangat dekat dengan nilai sebenarnya yaitu 0,27 kali diameter bumi). Ia juga memperkirakan bahwa Matahari memiliki diameter 7 kali diameter Bumi. Ini kira-kira 15 kali lebih kecil dari ukuran sebenarnya yang kita ketahui saat ini.
Aristoteles (384-322 SM)
Seorang ilmuwan Yunani yang percaya bahwa Matahari, Bulan dan planet-planet mengitari Bumi pada permukaan serangkaian bola angkasa yang rumit. Ia mengetahui bahwa Bumi dan Bulan berbentuk bola dan bahwa bulan bersinar dengan memantulkan cahaya Matahari, tetapi ia tak percaya bahwa Bumi bergerak dalam Antariksa ataupun bergerak dalam porosnya.
James Bradley (1693-1762)

Seorang ahli astronomi Inggris yang menemukan penyimpangan yang disebut Aberasi Sinar Cahaya di tahun 1728, yaitu bukti langsung pertama yang dapat diamati bahwa Bumi beredar mengelilingi Matahari. Dari besarnya penyimpangan ia menghitung kecepatan cahaya sebesar 295.000 km/dt. Hanya sedikit lebih kecil dari nilai sebenarnya (299.792,4574 km/dt, US National Bureau of Standards).
Tycho Brahe (1546-1601)
Seorang ahli astronomi Denmark, dipandang sebagai pengamat terbesar di zaman pra-teleskop. Dengan memakai alat bidik sederhana, Brahe mengukur posisi planet dengan ketelitian yang lebih besar dari siapapun sebelumnya. Hal ini memungkinkan asistennya, Johannes Kepler untuk memecahkan hukum gerakan planet.
Nicolaus Copernicus (1473-1543)
Seorang ahli astronomi Polandia yang mencetuskan pandangan bahwa Bumi bukanlah pusat alam semesta sebagaimana pandangan umum pada masanya, melainkan mengitari Matahari seperti planet lainnya. Pola berani ini disajikan dalam bukunya Mengenai Perkisaran Bola-Bola Angkasa yang terbit ditahun wafatnya. Polanya itu lebih memudahkan penjelasan tentang gerakan planet sesuai pengamatan. teorinya didukung oleh pengamatan Galileo dan dibenarkan oleh perhitungan Johannes Kepler
John Ludwig Emil Dreyer (1852-1926)
Seorang ahli astronomi Denmark yang menghimpun sebuah katalog utama yang memuat hampir 8000 kelompok bintang dan Nebula. Katalog yang disusunnya disebut Katalog Umum Baru (the New General Catalogue, NGC).
Eratosthenes (276-196 SM)
Seorang ahli astronomi Yunani yang pertama-tama mengukur besarnya Bumi secara teliti. Ia mencatat perbedaan ketinggian Matahari di langit sebagaimana terlihat pada tanggal yang sama dari dua tempat pada garis utara-selatan yang jaraknya diketahui. Dari pengamatannya, ia menghitung bahwa Bumi mestinya bergaris tengah 13.000 km. Hampir tepat dengan angka yang sebenarnya (12.756,28 km pada katulistiwa).
Galileo Galilei (1564-1642)
Seorang ilmuwan Italia yang menciptakan revolusi dalam astronomi dengan pengamatan perintisnya di angkasa. Dalam tahun 1609, Galileo mendengar mengenai penciptaan teleskop dan membuat satu bagi dirinya. Dengan itu ia menemukan kawah-kawah bulan, melihat bahwa Venus menunjukkan fase-fase sambil ia mengitari Matahari dan menemukan bahwa Jupiter memiliki empat buah Bulan.
Johann Gottfried Galle (1812-1910)
Seorang ahli astronomi Jerman yang menemukan planet Neptunus. Dengan menggunakan perhitungan Urbain Leverrier, Galle menemukan Neptunus pada malam hari, di tanggal 23 September 1846, tidak seberapa jauh dari posisi yang semula diperhitungkan.
George Gamow (1904-1968)
Seorang ahli astronomi Amerika pendukung teori ledakan besar (Big Bang). Menurut hitungannya, kira-kira 10% bahan dalam alam semesta seharusnya adalah Helium yang terbentuk dari Hidrogen selama terjadinya ledakan besar; pengamatan telah membenarkan ramalan ini. Ia juga meramalkan adanya suatu kehangatan kecil dalam alam semesta sebagai peninggalan ledakan besar. Radiasi Latar belakang ini akhirnya ditemukan pada 1965.
Sir William Herschel (1738-1822)
Seorang ahli astronomi Inggris, lahir di Jerman, yang menemukan planet Uranus pada tanggal 17 Maret 1781 beserta dua satelitnya dan juga dua satelit Saturnus. Herscel membuat survey lengkap langit utara dan menemukan banyak bintang ganda dan nebula. Untuk menangani pekerjaan ini, ia membangun sebuah reflektor 122 cm, terbesar di dunia saat itu. Survey langit Herschel itu meyakinkan bahwa galaksi kita berupa sistem bintang berbentuk lensa, dengan kita di dekat pusat. Pandangan ini diterima hingga zaman Harlow Shapley.
Hipparkus (abad ke-2 SM)
Seorang ahli astronomi Yunani yang dianggap terbesar di zamannya. Ia membuat sebuah katalog 850 bintang dengan teliti yang dibagi kedalam enam kelompok kecerlangan atau magnitudo; bintang paling cemerlang dengan magnitudo 1 dan yang paling lemah (yang tampak dengan mata telanjang) dengan magnitudo 6. Suatu sistem magnitudo yang disesuaikan masih digunakan dewasa ini. Hipparkus menemukan bahwa posisi bumi agak goyah di antariksa, suatu efek yang disebut presesi.
Sir Fred Hoyle (1915-…)
Seorang ahli astronomi Inggris yang dikenal karena karyanya mengenai Teori Keadaan Tunak yang menyangkal bahwa alam semesta diawali dengan suatu ledakan besar. Hoyle menunjukkan bagaimana unsur-unsur kimia berat dalam alam semesta tersusun dari hidrogen dan helium dengan reaksi-reaksi nuklir di dalam bintang, dan tersebar dalam antariksa oleh ledakan supernova.
Edmond Halley (1656-1742)
Seorang ahli astronomi Inggris yang di tahun 1705 memperhitungkan bahwa komet yang terlihat dalam tahun-tahun 1531, 1607 dan 1682 sesungguhnya adalah benda yang sama yang bergerak dalam satu garis edar tiap 75 atau 76 tahun mengedari matahari. Komet tersebut kini dikenal sebagai Komet Halley. Dalam tahubn 1720, Halley menjadi ahli astronomi kerajaan yang kedua, Di Greenwich ia membuat studi yang memakan waktu lama mengenai gerakan bulan.
Edwin Hubble (1889-1953)
Seorang ahli astronomi Amerika yang di tahun 1924 menunjukkan bahwa terdapat galaksi lain di luar galaksi kita. Selanjutnya ia mengelompokkan galaksi menurut bentuknya yang spiral atau eliptik. Di tahun 1929 ia mengumumkan bahwa alam semesta mengembang dan bahwa galaksi bergerak saling menjauhi denga kecepatan yang semakin tinggi; hubungan ini kemudian disebut hukum Hubble. Jarak sebuah galaksi dapat dihitung dengan hukum Hubble bila kecepatan menjauhnya diukur dari pergeseran merah cahayanya. Menurut pengukuran terakhir, galaksi bergerak pada 15 km/dt tiap jarak satu juta tahun cahaya. Nama Hubble kini diabadikan pada sebuah teleskop raksasa di antariksa yang dioperasikan oleh NASA.
Immanuel Kant (1724-1804)
Seorang filsuf Jerman yang pada tahun 1755 mengajukan cikal-bakal teori modern tentang tata surya. Kant percaya bahwa planet-planet tumbuh dari sebuah cakram materi di sekeliling Matahari, sebuah gagasan yang kemudian dikembangkan oleh Marquis de Laplace. Kant juga berpendapat bahwa nebula suram yang terlihat di antariksa adalah galaksi tersendiri seperti galaksi Bima Sakti kita. Pendapat tersebut kini telah terbukti kebenarannya.
Johannes Kepler (1571-1630)
Seorang ahli matematika dan ahli Astronomi Jerman yang menemukan ketiga hukum dasar pergerakan planet. Pertama, dan yang terpenting, ia di tahun 1609 menunjukkan bahwa planet bergerak mengelilingi Matahari dalam orbit eliptik, bukannya dalam kombinasi lingkaran-lingkaran sebagaimana diperkirakan sebelumnya. Ia menunjukkan pula bahwa kecepatan planet berubah sepanjang orbitnya, lebih cepat bila lebih dekat dengan Matahari dan lebih lambat bila jauh. Di tahun 1619 ia menunjukkan bahwa jangka waktu yang diperlukan sebuah planet untuk menyelesaikan satu orbit berkaitan dengan rata-rata jaraknya dari matahari. Untuk perhitungannya, Kepler menggunakan pengamatan Tycho Brahe.
Laplace, Pierre Simon, Marquis de (1749-1827)

Seorang ahli matematika Prancis yang mengembangkan teori asal mula tata surya yang digagas oleh Immanuel Kant. Di tahun 1796, Laplace melukiskan bagaimana cincin-cincin materi yang terlempar dari Matahari dapat memadat menjadi planet-planet. Perincian teori tersebut telah ditinjau kembali, tetapi pada pokoknya tidak berbeda dengan teori-teori modern mengenai awal-mula terjadinya tata surya.
Henrietta Leavitt (1868-1921)
Seorang ahli astronomi Amerika yang menemukan sebuah teknik penting dalam astronomi untuk mengukur jarak bintang dengan memakai bintang-bintang Variabel Cepheid. di tahun 1912 ia menemukan bahwa kecerlangan rata-rata sebuah Cepheid berhubungan langsung dengan jangka waktu yang diperlukannya untuk berubah, dengan Cepheid paling cemelang memiliki periode paling lama. Jadi, dengan mengukur waktu variasi cahaya sebuah Cepheid, para astronom dapat memperoleh kecerlangan sebenarnya, dengan demikian jaraknya dari bintang dan planet lain dapat pula dihitung.
Georges Lemaitre (1894-1966)
Seorang ahli astronomi Belgia yang pada tahun 1927 mencetuskan teori Ledakan Besar kosmologi yang menyatakan bahwa alam semesta dimulai dengan suatu ledakan besar dahulu kala dan bahwa sejak itu kepingannya masih terus beterbangan. Lemaitre mendasarkan teorinya pada pengamatan Edwin Hubble mengenai alam semesta yang mengembang.
Urbain Jean Joseph Leverrier (1811-1877)
Seorang ahli matematika Prancis yang memperhitungkan keberadaan planet Neptunus. Saat memeriksa gerakan Uranus, ia menemukan bahwa gerakannya dipengaruhi oleh sebuah planet tak dikenal. Perhitungan Leverrier memungkinkan penemuan Neptunus oleh Johann Galle.
Percival Lowell (1855-1916)
Seorang ahli astronomi Amerika yang memetakan saluran-saluran di Mars dan percaya tentang adanya kehidupan di planet tersebut. Dalam tahun 1894 ia mendirikan observatorium Lowell di Arizona guna mempelajari Mars. Lowell juga mempercayai adanya planet di seberang Neptunus yang belum ditemukan. Ia mulai mencarinya di langit dengan bantuan gambar foto. Planet baru itu, kemudian dinamai Pluto, akhirnya ditemukan oleh Clyde Tombaugh pada tahun 1930, setelah meninggalnya Lovell. Selain merupakan nama Dewa Kematian bangsa Yunani Kuno, dua huruf awal pada Pluto juga merupakan penghormatan untuk namanya.
Charles Messier (1730-1817)
Seorang ahli astronomi Prancis yang menyusun sebuah daftar berisi lebih dari 100 kelompok bintang dan nebula. Hingga sekarang, banyak diantara objek ini yang masih disebut dengan nomor Messier atau M, seperti M1, nebula Kepiting, dan M31, galaksi Andromeda.
Sir Isaac Newton (1642-1727)
Seorang ilmuwan Inggris yang melalui hukum-hukum gravitasinya membantu menerangkan mengapa planet mengitari Matahari. Johannes Kepler juga menghitung hal ini dengan hukumnya mengenai gerakan planet. Newton juga memberi sumbangan penting kepada astronomi pengamatan dengan penelitiannya mengenai cahaya dan optika. Di tahun 1668 ia membangun teleskop pemantul (reflektor) yang pertama di dunia.
Ptolomeus (abad ke-2 M)
Seorang ilmuwan Yunani yang menyusun gambaran baku mengenai Alam semesta yang dipakai oleh para ahli astronomi hingga zaman Renaissance. Menurut Ptolomeus, Matahari, Bulan, dan planet-planet beredar mengelilingi Bumi dengan suatu sistem yang rumit. Teori ini akhirnya ditentang dan dibuktikan kesalahannya oleh pandangan Copernicus. Ptolomeus menulis ensiklopedi besar astronomi Yunani yang disebut Almagest.
Pythagoras (abad ke-6 SM)
Seorang ilmuwan Yunani yang diketahui sebagai yang pertama kalinya mencetuskan gagasan bahwa Bumi berbentuk bola. Ia percaya bahwa Bumi terletak di pusat alam semesta dan benda-benda angkasa lain beredar mengelilingi Bumi.
Carl Sagan (1934-1996)
Seorang ilmuwan Amerika yang dikenal karena penelitiannya mengenai kemungkinan adanya bentuk kehidupan diluar planet Bumi. Ia terlibat sebagai peneliti dalam berbagai misi wahana tak berawak yang diluncurkan oleh NASA, diantaranya adalah misi Mariner ke planet Venus dan Viking ke planet Mars.
Giovanni Schiaparelli (1835-1910)
Seorang ahli astronomi Italia yang pertama kali melaporkan adanya “saluran” di permukaan planet Mars ketika planet tersebut mendekat di tahun 1877. Ia menamakannya canali, dari bahasa Italia yang berarti “saluran”. Ia tidak mempercayai bahwa saluran itu adalah buatan mahluk cerdas, tetapi penerjemahan yang kurang tepat memberi kesan yang keliru. Schiaparelli juga menunjukkan bahwa hujan meteor mengikuti garis edar sama seperti komet. Dari sana, ia menduga bahwa hujan meteor sebenarnya adalah puing sebuah komet.
Marteen Schmidt (1929-…)
Seorang ahli astronomi Amerika yang menemukan jarak-jarak kuasar dalam alam semesta. Di tahun 1963 ia mula-mula mengukur pergeseran merah dari kuasar C 273 yang ternyata begitu besar sehingga menurut hukum Hubble ia seharusnya terletak jauh diluar galaksi kita.
Harlow Shapley (1885-1972)
Seorang ahli astronomi Amerika yang di tahun 1921 pertama kali menghitung ukuran sebenarnya dari galaksi kita, dan menunjukkan bahwa Matahari tidak terletak di pusatnya. Shapley mengajukan gagasannya dari suatu studi mengenai kelompok globular perbintangan yang tersebar dalam suatu cincin di sekitar galaksi kita. Dengan mengukur jaraknya dari kecerlangan bintang yang dikandungnya, ia memperkirakan bahwa galaksi kita kira-kira berdiameter 100.000 tahun cahaya dan bahwa Matahari terletak kira-kira 30.000 tahun cahaya dari pusatnya.
Clyde Tombaugh (1906-1997)
Ahli astronomi Amerika yang pada bulan Februari 1930 menemukan planet Pluto dengan mempergunakan gambar-foto yang diambil di observatorium Lowell. Setelah penemuan Pluto, Tombaugh melanjutkan survey foto sekeliling langit untuk mencari planet lain yang mungkin ada, tetapi tidak menemukan sesuatu.
Carl von Weizsacker, (1912-…)
Seorang astronom Jerman yang dalam tahun 1945 menggagas dasar teori-teori modern mengenai asal mula tata surya. Ia membayangkan bahwa planet terbentuk dari kumpulan partikel-partikel debu yang berasal dari sebuah cakram yang terdiri dari materi yang mengelilingi Matahari saat masih muda. Teorinya ini merupakan perubahan dari teori sebelumnya yang digagas oleh Kant dan Laplace

Nicolaus Copernicus : Ahli Astronomi, Penemu Sistem Matahari
Nicolaus Copernicus (1473-1543) Astronom (ahli perbintangan), penumu Sistem Matahari atau Sistem Copernicus, Bapak Astronomi Modern, dokter, doctor, pengarang, kanunik, tidak pernah kawin berkebangsaan Polandia (nama Polandianya: Nicolaus Koppernik). Sistem Copernicus (matahari sebagai pusat tata surya) menyebabkan ditemukannya Hukum Kepler dan Hukum Gravitasi Newton. Copernicus dilahirkan pada tanggal 14 Februari 1473 di kota Torun di tepi sungai Vistula, Polandia dan meninggal pada tanggal 24 Mei 1543 di Frauenburg, Prusia Timur, Polandia dalam usia 70 tahun. Ayahnya bernama Nicholas Koppernigk, seorang pedagang kaya dan berpengaruh di Kota Torun, Polandia. Ibunya bernama Barbara Waczenrode juga berasal dari keluarga kaya.
Copernicus merupakan anak bungsu dan mempunya tiga kakak yaitu Barbara yang menjadi biara, Katherina, dan Andrew . Pada saat usia 2 tahun ibunya meninggal dunia dan delapan tahun kemudian bapaknya juga meninggal dunia pada saat Copernicus berusia 10 tahun. Copernicus dan kakak-kakaknya kemudian asuh oleh pamannya Lucas Waczenrode yang kemudian menjadi uskup di Ermeland.
Sebagai anak muda belia, Copernicus belajar di Universitas Cracow, selaku murid yang menaruh minat besar terhadap ihwal ilmu perbintangan atau astrologi, filsafat, geometri, dan geografi. Di Universitas inilah Nicholas Koppernik mengganti nama mejadi Nicolaus Copernicus karena bahasa pengantar yang dipakai di Universitas Cracow adalah bahasa latin. Pada usia dua puluhan dia pergi melawat ke Italia, belajar kedokteran dan hukum di Universitas Bologna dan Padua yang kemudian dapat gelar Doktor dalam hukum gerejani dari Universitas Ferrara. Copernicus menghabiskan sebagian besar waktunya tatkala dewasa selaku staf pegawai Katedral di Frauenburg (istilah Polandia: Frombork), selaku ahli hukum gerejani yang sesungguhnya Copernicus tak pernah jadi astronom profesional, kerja besarnya yang membikin namanya melangit hanyalah berkat kerja sambilan.
Selama berada di Italia, Copernicus sudah berkenalan dengan ide-ide filosof Yunani Aristarchus dari Samos (abad ke-13 SM). Filosof ini berpendapat bahwa bumi dan planet-planet lain berputar mengitari matahari. Copernicus jadi yakin atas kebenaran hipotesa "heliocentris" ini, dan tatkala dia menginjak usia empat puluh tahun dia mulai mengedarkan buah tulisannya diantara teman-temannya dalam bentuk tulisan-tulisan ringkas, mengedepankan cikal bakal gagasannya sendiri tentang masalah itu. Copernicus memerlukan waktu bertahun-tahun melakukan pengamatan, perhitungan cermat yang diperlukan untuk penyusunan buku besarnya De Revolutionibus Orbium Coelestium (Tentang Revolusi Bulatan Benda-benda Langit), yang melukiskan teorinya secara terperinci dan mengedepankan pembuktian-pembuktiannya.
Pada waktu itu pendapat Aristoteles tentang susunan tata surya sudah diterima mentah-mentah selama 1600 tahun dan juga pendapat Ptolemeus diterima mentah-mentah selama 1400 tahun padahal pendapat keduanya terbukti salah besar. Keduanya berpendapat bahwa bumi tak bergerak dan dikelilingi oleh matahari dan bintang-bintang. Pendapat ini membuat kalender kacau balau.


Untuk membuktikan bahwa bumi mengelilingi matahari harus ditemukan aberasi cahaya dan paralaks. Manusia membutuhkan waktu 185 tahun untuk menemukan aberasi cahaya. Pada tahun 1728 Bradley, ahli astronomi Inggris menemukan aberasi cahaya. Untuk menemukan paralaks manusia membutuhkan waktu 297 tahun. Bessel, ahli astronomi Jerman menemukan paralaks pada tahun 1840, hampir 30 tahun setelah Copernicus mengemukakan teorinya. Jadi Bradley dan Bessel yang membuktikan teorinya.
Di tahun 1533, tatkala usianya menginjak enam puluh tahun, Copernicus mengirim berkas catatan-catatan ceramahnya ke Roma. Di situ dia mengemukakan prinsip-prinsip pokok teorinya tanpa mengakibatkan ketidaksetujuan Paus. Baru tatkala umurnya sudah mendekati tujuh puluhan, Copernicus memutuskan penerbitan bukunya, dan baru tepat pada saat meninggalnya dia dikirimi buku cetakan pertamanya dari si penerbit. Ini tanggal 24 Mei 1543.
Dalam buku itu Copernicus dengan tepat mengatakan bahwa bumi berputar pada porosnya, bahwa bulan berputar mengelilingi matahari dan bumi, serta planet-planet lain semuanya berputar mengelilingi matahari. Tapi, seperti halnya para pendahulunya, dia membuat perhitungan yang serampangan mengenai skala peredaran planet mengelilingi matahari. Juga, dia membuat kekeliruan besar karena dia yakin betul bahwa orbit mengandung lingkaran-lingkaran. Jadi, bukan saja teori ini ruwet secara matematik, tapi juga tidak betul. Meski begitu, bukunya lekas mendapat perhatian besar. Para astronom lain pun tergugah, terutama astronom berkebangsaan Denmark, Tycho Brahe, yang melakukan pengamatan lebih teliti dan tepat terhadap gerakan-gerakan planet. Dari data-data hasil pengamatan inilah yang membuat Johannes Kepler akhirnya mampu merumuskan hukum-hukum gerak planet yang tepat.
Meski Aristarchus lebih dari tujuh belas abad lamanya sebelum Copernicus sudah mengemukakan persoalan-persoalan menyangkut hipotesa peredaran benda-benda langit, adalah layak menganggap Copernicuslah orang yang memperoleh penghargaan besar. Sebab, betapapun Aristarchus sudah mengedepankan pelbagai masalah yang mengandung inspirasi, namun dia tak pernah merumuskan teori yang cukup terperinci sehingga punya manfaat dari kacamata ilmiah. Tatkala Copernicus menggarap perhitungan matematik hipotesa-hipotesa secara terperinci, dia berhasil mengubahnya menjadi teori ilmiah yang punya arti dan guna. Dapat digunakan untuk dugaan-dugaan, dapat dibuktikan dengan pengamatan astronomis, dapat bermanfaat di banding lain-lain teori yang terdahulu bahwa dunialah yang jadi sentral ruang angkasa.
Jelaslah dengan demikian, teori Copernicus telah merevolusionerkan konsep kita tentang angkasa luar dan sekaligus sudah merombak pandangan filosofis kita. Namun, dalam hal penilaian mengenai arti penting Copernicus, haruslah diingat bahwa astronomi tidaklah mempunyai jangkauan jauh dalam penggunaan praktis sehari-hari seperti halnya fisika kimia dan biologi. Sebab, hakekatnya orang bisa membikin peralatan televisi, mobil, atau pabrik kimia modern tanpa mesti saedikitpun pun menggunakan teori Copernicus. (Sebaliknya, orang tidak bakal bisa membikin benda-benda itu tanpa menggunakan buah pikiran Faraday, Maxwell, Lavosier atau Newton).
Tetapi, jika semata-mata kita mengarahkan perhatian hanya semata-mata kepada pengaruh langsung Copernicus di bidang teknologi, kita akan kehilangan arti penting Copernicus yang sesungguhnya. Buku Copernicus punya makna yang tampaknya tak memungkinkan baik Galileo maupun Kepler menyelesaikan kerja ilmiahnya. Kesemua mereka adalah pendahulu-pendahulu yang penting dan menentukan bagi Newton, dan penemuan merekalah yang membikin kemungkinan bagi Newton merumuskan hukum-hukum gerak dan gaya beratnya. Secara historis, penerbitan De Revolutionobus Orbium Coelestium merupakan titik tolak astronomi modern. Lebih dari itu, merupakan titik tolak pengetahuan modern.

Jumat, 25 Juni 2010

proses terbentuknya galaksi

Menurut hipotesis Fowler (1957 M), 12 milyard tahun yang lalu masih
berupa gas hidrogen yang sangat besar dan berada di ruang angkasa dan
bergerak perlahan-lahan mengadakan rotasi sehingga keseluruhan
berbentuk bulat. Karena gaya beratnya ia mengalami proses kontraksi
(pengkerutan). Pada masa kontraksi bagian luar dari kabut banyak yang
tertinggal.
Pada bagian yang berputar lambat dan mempunyai berat jenis besar.
Terbentuklah embun-embun lokal dengan bintang-bintang di dalamnya.
Gumpalan kabut yang membentuk bintang itu secara perlahan-lahan
mengadakan kontraksi. Potensi energi (energi potensial) yang
dikeluarkan dalam bentuk sinar radiasi (pancaran) panas, makin turun
temperaturnya.
Setelah berpuluh juta tahun maka mempunyai bentuk yang relatif tetap
seperti matahari kita. Hipotesis ini dibuktikan oleh observasi ke
pusat galaksi, bahwa tempat tersebut selalu melahirkan bintang-bintang
baru baik secara perlahan-lahan (tenang) maupun secara eksplosif.
Hubble menyusun hipotesis evolusi galaksi mulai dengan kabut yang
berbentuk bola (Eo) dari gas-gas yang belum melahirkan bintang-bintang
sampai memepat di kedua kutubnya berbentuk lensa (E7). Oleh karena
makin cepatnya berputar kemudian menjadi bentuk spiral biasa dari
jenis Sa sampai dengan Sc atau berkembang menjadi galaksi spiral
batang dari jenis Sba sampai dengan Sbc.